ChatGPT and Foundation Models: The Future of AI-Assisted Workplace


ChatGPT and Foundation Models: The Future of the AI-Assisted Workplace

By Yuri Brigance

The rise of generative models such as ChatGPT and Stable Diffusion has generated a lot of discourse about the future of work and the AI-assisted workplace. There is tremendous excitement about the awesome new capabilities such technology promises, as well as concerns over losing jobs to automation. Let’s look at where we are today, how we can leverage these new AI-generated text technologies to supercharge productivity, and what changes they may signal to a modern workplace.

Will ChatGPT Take Away Your Job?

That’s the question on everyone’s mind. AI can generate images, music, text, and code. Does this mean that your job as a designer, developer, or copywriter is about to be automated? Well, yes. Your job will be automated in the sense that it is about to become a lot more efficient, but you’ll still be in the driver’s seat.

First, not all automation is bad. Before personal computers became mainstream, taxes were completed with pen and paper. Did modern tax software put accountants out of business? Not at all. It made their job easier by automating repetitive, boring, and boilerplate tasks. Tax accountants are now more efficient than ever and can focus on mastering tax law rather than wasting hours pushing paper. They handle more complicated tax cases, those personalized and tailored to you or your business. Similarly, it’s fair to assume that these new generative AI tools will augment creative jobs and make them more efficient and enjoyable, not supplant them altogether.

Second, generative models are trained on human-created content. This ruffles many feathers, especially those in the creative industry whose art is being used as training data without the artist’s explicit permission, allowing the model to replicate their unique artistic style. Stability.ai plans to address this problem by enabling artists to opt out of having their work be part of the dataset, but realistically there is no way to guarantee compliance and no definitive way to prove whether your art is still being used to train models. But this does open interesting opportunities. What if you licensed your style to an AI company? If you are a successful artist and your work is in demand, there could be a future where you license your work to be used as training data and get paid any time a new image is generated based on your past creations. It is possible that responsible AI creators can calculate the level of gradient updates during training, and the percentage of neuron activation associated to specific samples of data to calculate how much of your licensed art was used by the model to generate an output. Just like Spotify pays a small fee to the musician every time someone plays one of their songs, or how websites like Flaticon.com pay a fee to the designer every time one of their icons is downloaded.  Long story short, it is likely that soon we’ll see more strict controls over how training datasets are constructed regarding licensed work vs public domain.

Let’s look at some positive implications of this AI-assisted workplace and technology as it relates to a few creative roles and how this technology can streamline certain tasks.

As a UI designer, when designing web and mobile interfaces you likely spend significant time searching for stock imagery. The images must be relevant to the business, have the right colors, allow for some space for text to be overlaid, etc. Some images may be obscure and difficult to find. Hours could be spent finding the perfect stock image. With AI, you can simply generate an image based on text prompts. You can ask the model to change the lighting and colors. Need to make room for a title? Use inpainting to clear an area of the image. Need to add a specific item to the image, like an ice cream cone? Show AI where you want it, and it’ll seamlessly blend it in. Need to look up complementary RGB/HEX color codes? Ask ChatGPT to generate some combinations for you.

Will this put photographers out of business? Most likely not. New devices continue to come out, and they need to be incorporated into the training data periodically. If we are clever about licensing such assets for training purposes, you might end up making more revenue than before, since AI can use a part of your image and pay you a partial fee for each request many times a day, rather than having one user buy one license at a time. Yes, work needs to be done to enable this functionality, so it is important to bring this up now and work toward a solution that benefits everyone. But generative models trained today will be woefully outdated in ten years, so the models will continue to require fresh human-generated real-world data to keep them relevant. AI companies will have a competitive edge if they can license high-quality datasets, and you never know which of your images the AI will use – you might even figure out which photos to take more of to maximize that revenue stream.

Software engineers, especially those in professional services frequently need to switch between multiple programming languages. Even on the same project, they might use Python, JavaScript / TypeScript, and Bash at the same time. It is difficult to context switch and remember all the peculiarities of a particular language’s syntax. How to efficiently do a for-loop in Python vs Bash? How to deploy a Cognito User Pool with a Lambda authorizer using AWS CDK? We end up Googling these snippets because working with this many languages forces us to remember high-level concepts rather than specific syntactic sugar. GitHub Gist exists for the sole purpose of offloading snippets of useful code from local memory (your brain) to external storage. With so much to learn, and things constantly evolving, it’s easier to be aware that a particular technique or algorithm exists (and where to look it up) rather than remember it in excruciating detail as if reciting a poem. Tools like ChatGPT integrated directly into the IDE would reduce the amount of time developers spend remembering how to create a new class in a language they haven’t used in a while, how to set up branching logic or build a script that moves a bunch of files to AWS S3. They could simply ask the IDE to fill in this boilerplate to move on to solving the more interesting algorithmic challenges.

An example of asking ChatGPT how to use Python decorators. The text and example code snippet is very informative.

For copywriters, it can be difficult to overcome the writer’s block of not knowing where to start or how to conclude an article. Sometimes it’s challenging to concisely describe a complicated concept. ChatGPT can be helpful in this regard, especially as a tool to quickly look up clarifying information about a topic. Though caution is justified as demonstrated recently by Stephen Wolfram, CEO of Wolfram Alpha who makes a compelling argument that ChatGPT’s answers should not always be taken at face value.. So doing your own research is key. That being the case, OpenAI’s model usually provides a good starting point at explaining a concept, and at the very least it can provide pointers for further research. But for now, writers should always verify their answers. Let’s also be reminded that ChatGPT has not been trained on any new information created after the year 2021, so it is not aware of new developments on the war in Ukraine, current inflation figures, or the recent fluctuations of the stock market, for example.

In Conclusion

Foundation models like ChatGPT and Stable Diffusion can augment and streamline workflows, and they are still far from being able to directly threaten a job. They are useful tools that are far more capable than narrowly focused deep learning models, and they require a degree of supervision and caution. Will these models become even better 5-10 years from now? Undoubtedly so. And by that time, we might just get used to them and have several years of experience working with these AI agents, including their quirks and bugs.

There is one important thing to take away about Foundation Models and the future of the AI-assisted workplace: today they are still very expensive to train. They are not connected to the internet and can’t consume information in real-time, in online incremental training mode. There is no database to load new data into, which means that to incorporate new knowledge, the dataset must grow to encapsulate recent information, and the model must be fine-tuned or re-trained from scratch on this larger dataset. It’s difficult to verify that the model outputs factually correct information since the training dataset is unlabeled and the training procedure is not fully supervised. There are interesting open source alternatives on the horizon (such as the U-Net-based StableDiffusion), and techniques to fine-tune portions of the larger model to a specific task at hand, but those are more narrowly focused, require a lot of tinkering with hyperparameters, and generally out of scope for this particular article.

It is difficult to predict exactly where foundation models will be in five years and how they will impact the AI-assisted workplace since the field of machine learning is rapidly evolving. However, it is likely that foundation models will continue to improve in terms of their accuracy and ability to handle more complex tasks. For now, though, it feels like we still have a bit of time before seriously worrying about losing our jobs to AI. We should take advantage of this opportunity to hold important conversations now to ensure that the future development of such systems maintains an ethical trajectory.


Additional resources:


What Separates ChatGPT and Foundation Models from Regular AI Models?


What Separates ChatGPT and Foundation Models from Regular AI Models?

By Yuri Brigance

This introduces what separates foundation models from regular AI models. We explore the reasons these models are difficult to train and how to understand them in the context of more traditional AI models.

ChatGPT

What are foundation models, and how are they different from traditional deep learning AI models? The Stanford Institute’s Center of Human-Centered AI defines a foundation model as “any model that is trained on broad data (generally using self-supervision at scale) that can be adapted to a wide range of downstream tasks”. This describes a lot of narrow AI models as well, such as MobileNets and ResNets – they too can be fine-tuned and adapted to different tasks.

The key distinctions here are “self-supervision at scale” and “wide range of tasks”.

Foundation models are trained on massive amounts of unlabeled/semi-labeled data, and the model contains orders of magnitude more trainable parameters than a typical deep learning model meant to run on a smartphone. This makes foundation models capable of generalizing to a much wider range of tasks than smaller models trained on domain-specific datasets. It is a common misconception that throwing lots of data at a model will suddenly make it do anything useful without further effort.  Actually, such large models are very good at finding and encoding intricate patterns in the data with little to no supervision – patterns which can be exploited in a variety of interesting ways, but a good amount of work needs to happen in order to use this learned hidden knowledge in a useful way.

Unsupervised, semi-supervised, and transfer learning are not new concepts, and to a degree, foundation models fall into this category as well. These learning techniques trace their roots back to the early days of generative modeling such as Restricted Boltzmann Machines and Autoencoders. These simpler models consist of two parts: an encoder and a decoder. The goal of an autoencoder is to learn a compact representation (known as encoding or latent space) of the input data that captures the important features or characteristics of the data, aka “progressive linear separation” of the features that define the data. This encoding can then be used to reconstruct the original input data or generate entirely new synthetic data by feeding cleverly modified latent variables into the decoder.

An example of a convolutional image autoencoder model architecture is trained to reconstruct its own input, ex: images. Intelligently modifying the latent space allows us to generate entirely new images. One can expand this by adding an extra model that encodes text prompts into latent representations understood by the decoder to enable text-to-image functionality.

Many modern ML models use this architecture, and the encoder portion is sometimes referred to as the backbone with the decoder being referred to as the head. Sometimes the models are symmetrical, but frequently they are not. Many model architectures can serve as the encoder or backbone, and the model’s output can be tailored to a specific problem by modifying the decoder or head. There is no limit to how many heads a model can have, or how many encoders. Backbones, heads, encoders, decoders, and other such higher-level abstractions are modules or blocks built using multiple lower-level linear, convolutional, and other types of basic neural network layers. We can swap and combine them to produce different tailor-fit model architectures, just like we use different third-party frameworks and libraries in traditional software development. This, for example, allows us to encode a phrase into a latent vector which can then be decoded into an image.

Modern Natural Language Processing (NLP) models like ChatGPT fall into the category of Transformers. The transformer concept was introduced in the 2017 paper “Attention Is All You Need” by Vaswani et al. and has since become the basis for many state-of-the-art models in NLP. The key innovation of the transformer model is the use of self-attention mechanisms, which allow the model to weigh the importance of different parts of the input when making predictions. These models make use of something called an “embedding”, which is a mathematical representation of a discrete input, such as a word, a character, or an image patch, in a continuous, high-dimensional space. Embeddings are used as input to the self-attention mechanisms and other layers in the transformer model to perform the specific task at hand, such as language translation or text summarization. ChatGPT isn’t the first, nor the only transformer model around. In fact, transformers have been successfully applied in many other domains such as computer vision and sound processing.

So if ChatGPT is built on top of existing concepts, what makes it so different from all the other state-of-the-art model architectures already in use today? A simplified explanation of what distinguishes a foundation model from a “regular” deep learning model is the immense scale of the training dataset as well as the number of trainable parameters that a foundation model has over a traditional generative model. An exceptionally large neural network trained on a truly massive dataset gives the resulting model the ability to generalize to a wider range of use cases than its more narrowly focused brethren, hence serving as a foundation for an untold number of new tasks and applications. Such a large model encodes many useful patterns, features, and relationships in its training data. We can mine this body of knowledge without necessarily re-training the entire encoder portion of the model. We can attach different new heads and use transfer learning and fine-tuning techniques to adapt the same model to different tasks. This is how just one model (like Stable Diffusion) can perform text-to-image, image-to-image, inpainting, super-resolution, and even music generation tasks all at once.

The GPU compute and human resources required to train a foundation model like GPT from scratch dwarf those available to individual developers and small teams. The models are simply too large, and the dataset is too unwieldy. Such models cannot (as of now) be cost-effectively trained end-to-end and iterated using commodity hardware.

Although the concepts may be well explained by published research and understood by many data scientists, the engineering skills and eye-watering costs required to wire up hundreds of GPU nodes for months at a time would stretch the budgets of most organizations. And that’s ignoring the costs of dataset access, storage, and data transfer associated with feeding the model massive quantities of training samples.

There are several reasons why models like ChatGPT are currently out of reach for individuals to train:

  1. Data requirements: Training a large language model like ChatGPT requires a massive amount of text data. This data must be high-quality and diverse and is typically obtained from a variety of sources such as books, articles, and websites. This data is also preprocessed to get the best performance, which is an additional task that requires knowledge and expertise. Storage, data transfer, and data loading costs are substantially higher than what is used for more narrowly focused models.
  2. Computational resources: ChatGPT requires significant computational resources to train. This includes networked clusters of powerful GPUs, and a large amount of memory volatile and non-volatile. Running such a computer cluster can easily reach hundreds of thousands per experiment.
  3. Training time: Training a foundation model can take several weeks or even months, depending on the computational resources available. Wiring up and renting this many resources requires a lot of skill and a generous time commitment, not to mention associated cloud compute costs.
  4. Expertise: Getting a training run to complete successfully requires knowledge of machine learning, natural language processing, data engineering, cloud infrastructure, networking, and more. Such a large cross-disciplinary set of skills is not something that can be easily picked up by most individuals.

That said, there are pre-trained models available, and some can be fine-tuned with a smaller amount of data and resources for a more specific and narrower set of tasks, which is a more accessible option for individuals and smaller organizations.

Stable Diffusion took $600k to train – the equivalent of 150K GPU hours. That is a cluster of 256 GPUs running 24/7 for nearly a month.  Stable Diffusion is considered a cost reduction compared to GPT. So, while it is indeed possible to train your own foundation model using commercial cloud providers like AWS, GCP, or Azure, the time, effort, required expertise, and overall cost of each iteration impose limitations on their use. There are many workarounds and techniques to re-purpose and partially re-train these models, but for now, if you want to train your own foundation model from scratch your best bet is to apply to one of the few companies which have access to resources necessary to support such an endeavor.


Additional resources:


Data Trends: Six Ways Data Will Change Business in 2023 and Beyond


Data Trends: Six Ways Data Will Change Business in 2023 and Beyond

By Kristina Scott

Data is big and getting bigger. We’ve tracked six major data-driven trends for the coming year.

data trends

Data is one of the fastest-growing and most innovative opportunities today to shape the way we work and lead. IDC predicts that by 2024, the inability to perform data- and AI-driven strategy will negatively affect 75% of the world’s largest public companies. And by 2025, 50% of those companies will promote data-informed decision-making by embedding analytics in their enterprise software (up from 33% in 2022), boosting demand for more data solutions and data-savvy employees.

Here is how data trends will shift in 2023 and beyond:

  1. Data Democratization Drives Data Culture

If you think data is only relevant to analysts with advanced knowledge of data science, we’ve got news for you.  Data democratization is one of the most important trends in data. Gartner research forecasts that 80% of data-driven initiatives that are focused on business outcomes will become essential business functions by 2025.

Organizations are creating a data culture by attracting data-savvy talent and promoting data use and education for employees at all levels. To support data democratization, data must be exact, easily digestible, and accessible.

Research by McKinsey found that high-performing companies have a data leader in the C-suite and make data and self-service tools universally accessible to frontline employees.

2. Hyper-Automation and Real-Time Data Lower Costs

Real-time data and its automation will be the most valuable big data tools for businesses in the coming years. Gartner forecasts that by 2024, rapid hyper-automation will allow organizations to lower operational costs by 30%. And by 2025, the market for hyper-automation software will hit nearly $860 billion.

3. Artificial Intelligence and Machine Learning (AI & ML) Continue to Revolutionize Operations

The ability to implement AI and ML in operations will be a significant differentiator. Verta Insights found that industry leaders that outperform their peers financially, are more than 2x as likely to ship AI projects, products, or features, and have made AI/ML investments at a higher level than their peers.

AI and ML technologies will boost the Natural Language Processing (NLP) market. NLP enables machines to understand and communicate with us in spoken and written human languages. The NLP market size will grow from $15.7 billion in 2022 to $49.4 billion by 2027, according to research from MarketsandMarkets.

We have seen the wave of interest in OpenAI’s ChatGPT, a conversational language-generation software. This highly-scalable technology could revolutionize a range of use cases— from summarizing changes to legal documents to completely changing how we research information through dialogue-like interactions, says CNBC.

This can have implications in many industries. For example, the healthcare sector already employs AI for diagnosis and treatment recommendations, patient engagement, and administrative tasks. 

4. Data Architecture Leads to Modernization

Data architecture accelerates digital transformation because it solves complex data problems through the automation of baseline data processes, increases data quality, and minimizes silos and manual errors. Companies modernize by leaning on data architecture to connect data across platforms and users. Companies will adopt new software, streamline operations, find better ways to use data, and discover new technological needs.

According to MuleSoft, organizations are ready to automate decision-making, dynamically improve data usage, and cut data management efforts by up to 70% by embedding real-time analytics in their data architecture.

5. Multi-Cloud Solutions Optimize Data Storage

Cloud use is accelerating. Companies will increasingly opt for a hybrid cloud, which combines the best aspects of private and public clouds.

Companies can access data collected by third-party cloud services, which reduces the need to build custom data collection and storage systems, which are often complex and expensive.

In the Flexera State of Cloud Report, 89% of respondents have a multi-cloud strategy, and 80% are taking a hybrid approach.

6. Enhanced Data Governance and Regulation Protect Users

Effective data governance will become the foundation for impactful and valuable data. 

As more countries introduce laws to regulate the use of various types of data, data governance comes to the forefront of data practices. European GDPR, Canadian PIPEDA, and Chinese PIPL won’t be the last laws that are introduced to protect citizen data.

Gartner has predicted that by 2023, 65% of the world’s population will be covered by regulations like GDPR. In turn, users will be more likely to trust companies with their data if they know it is more regulated.

Valence works with clients to implement a governance framework, find sources of data and data risk, and activate the organization around this innovative approach to data and process governance, including education, training, and process development. Learn more.

What these data trends add up to

As we step into 2023, organizations that understand current data trends can harness data to become more innovative, strategic, and adaptable. Our team helps clients with data assessments, by designing and structuring data assets, and by building modern data management solutions. We strategically integrate data into client businesses, use machine learning and artificial intelligence to create proactive insights, and create data visualizations and dashboards to make data meaningful.  

We help clients to develop a solution and create a modern data architecture that supports differentiated, cloud-enabled scalability, self-service capability, and faster time-to-market for new data products and solutions. Learn more.

Additional resources: